a2 United States Patent
Odaira

US009250939B2

(10) Patent No.: US 9,250,939 B2
(45) Date of Patent: Feb. 2, 2016

(54) INFORMATION PROCESSING DEVICE,
PROFILE TARGET DETERMINING
PROGRAM, AND METHOD

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventor: Rei Odaira, Tokyo (JP)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 527 days.

(21) Appl. No.: 13/672,789
(22) Filed: Nowv. 9, 2012

(65) Prior Publication Data
US 2013/0125103 Al May 16, 2013

(30) Foreign Application Priority Data
Nov. 11,2011 (JP) cevercivececnccreecnne 2011-247635
(51) Imt.ClL
GO6F 9/45 (2006.01)
GO6F 9/455 (2006.01)
(52) US.CL
CPC GO6F 9/4552 (2013.01); GOGF 8/4441
(2013.01)

(58) Field of Classification Search
CPC GOG6F 11/34; GOGF 9/4552; GOGF 8/4441
USPC oo 717/130-133, 154-158
See application file for complete search history.

‘et Page Prtecting
Mochsnism For Proflar
Caldp

Does Execuied
Instruction Acoess Yo

Samplad Objct?

(56) References Cited
U.S. PATENT DOCUMENTS

6,513,155 B1* 1/2003 Alexanderetal. 717/124
7,100,155 B1* 82006 Wu 717/158
7,779,238 B2* 82010 Koscheetal. .. . 7127227
8,176,475 B2* 5/2012 Koscheetal. ... 717/127

2002/0019716 Al 2/2002 Agesen et al.
2007/0162896 Al 7/2007 Gevaetal.

FOREIGN PATENT DOCUMENTS

Jp 11-039167 A 2/1999
Jp HI11316711 A 11/1999
Jp 2002-304302 A 10/2002
(Continued)
OTHER PUBLICATIONS

Chen et al., “Data Dependence Profiling for Speculative Optimiza-
tions”, 2004, LNCS 2985—Compiler Construction—Springer, pp.
57-72.%

(Continued)

Primary Examiner — Ted T Vo
(74) Attorney, Agent, or Firm — Jeff Tang

(57) ABSTRACT

The information processing system of the present invention
includes a profile information collection unit for storing
access-related profile information in response to detecting
access to an object set as a profile target on the basis of the
sampling frequency for each class or object allocation site
during the execution of a program, and a sampling frequency
updating unit for calculating the allocation percentage of an
object having properties used in the optimization of the pro-
gram at each class or object allocation site on the basis of
profile information, and for reducing the sampling frequency
regarding a class or object allocation site in which the calcu-
lated percentage is below a predetermined threshold value.

13 Claims, 14 Drawing Sheets

Inifelze Profiing Informateon
Shucture

US 9,250,939 B2
Page 2

(56) References Cited OTHER PUBLICATIONS

FOREIGN PATENT DOCUMENTS]?uytaen et al., “Using HPM-Sampling to Drive Dynamic Compila-
tion”, 2007, ACM, 15 pages.*

JP 2004-102597 A 4/2004 . .
JP 2005-071135 A 3/2005 * cited by examiner

U.S. Patent Feb. 2, 2016 Sheet 1 of 14 US 9,250,939 B2

FIG. 1A
' 50
i Main FAAN , ;
\ Memory gy _ ROM J"‘M"‘
| 15
fy] Main AN S;gﬁ' % (To Modem)
S CPU | ~ i : :
”””” ? ” P';rg:iel ¢ (To Printer)
Keyboard §~~ Keyboard/
Mouse L % 1%
Controller (EN I g
-ﬁ i
Mouse 5 ¥
18
'5 s, [Communication j =~ (To Network)
? - » CAdapter Catrd "’4"""
¢ 9 8 5

DU § Graphics o |
VRAM Controller ¥ ¢19 g &0
§ N Foe KO ron |

|
Displ ;
DI:\F/Ji:g AT S L K IDE Controller {5 2%
~ Lene ok
{ - g Bus - AN 3 - 28
10 2 A s ﬂﬁf
HOB 1 i pom .
:
¢ 22 21
{ X f 8CSI Controller
o Audio
Amplifierf, Controller

S Lp YR U
MO |

CO- 1
RO El\iﬁ@ 0

U.S. Patent

Feb. 2, 2016

FIG. 1B

Sheet 2 of 14

/ 100

Application
Executing Unit Dynamic
(Interpreter) Compiler
1135 125
Memory
Profiler Managing Unit
120 130

Virtual Machine

118

US 9,250,939 B2

U.S. Patent

Feb. 2, 2016

Sheet 3 of 14

200

US 9,250,939 B2

ke ki

peib st o oy

| N Code Rewriting
{ Verification Unit | Address Table Unit
. 210 Storage Unit :
215 A58 :
. 1&0
e e e e e aamasasnaavassaranaasausasavanansecanFaeonananas

Mark Setting Unit Initializing Unit { § _ 145
202 203 o
Call-Up Settin {
LFJ)nit 9 Removal Unit o 130
S RCT TS IO TP TSR PRRP: (128

Profile Information Removal Sampling Frequency
Collection Unit Determining Unit Updating Unit
220 =0 238
. . Immediate)
Profile Informa_tlon Removal Unit Sampling Frequency §
Storage Unit 250 Storage Unit

225

240

U.S. Patent Feb. 2, 2016 Sheet 4 of 14 US 9,250,939 B2

FIG. 3A

300+

ré = ohjeg pointern;

302w

if (r5 has mark)
goto Profiler;

write to r5.field1;

done_label 1:

Profiler;
1. access object indicated by
r5 (read or write);

2. update profile of object;

3. return immediately after
access;

304w,

if (r5 has mark)
goto Profiler;

write to r5.field2;

done_label 2:

J08 ~

U.S. Patent Feb. 2, 2016 Sheet 5 of 14 US 9,250,939 B2

FIG. 3B

300

e = obiecy poimtss

Profiler;
1. access destination object specified
by r5 (read or write);

&
""""""""""""""""""""""""" W 2. if (profile-unnecessary mark affixed
. to object) {
if (r5 has ma_rk)_ 2-1. call up table using instruction
goto Profiler;
write to r5.field1: address caused by access ;
done label 1: ’ 2-2. if (hlt in table),
v - remove mark in pointer to r5,
write back to r5;
} else {
2-3. update profile of object;
2-4 if necessary affix profile-
unnecessary mark to object;
}

3. return immediately after access;

304

if (r5 has mark)
goto Profiler;
write to r5.field2;

done_label 2: . i
Y

TEEIERBREIERIRFARSREBRAST

-

310

U.S. Patent

FIG. 4

Feb. 2, 2016

¥ ¢S400

Sheet 6 of 14

US 9,250,939 B2

Initialize Sampling Frequency
for Each Class/Allocation Site
Using Same Value

¢ 5402

.‘rﬂﬂ

Set Page Protecting
Mechanism For Profiler
Call-Up

¢ 5404

- 5408

5410

Execute Code

~° Code Compilin. >

3
N
N

Does Executed
Program Allocate

GC Necessary? ‘

Processing by Memory
Managing Unit

Determine Allocated Object

Necessary?

Object? as Sampling Target e
Mo
£ S416
A —————— N ‘:’ Mark Sampling Target With
g Pointer to Allocated Object
s418 ,
- 3 4 (5417
Does Executed en o ” :
Instruction Access Initialize Profiling Information
. Sampled Object? Structure
N ¢ 5420
N@*k—— Processing by Profiler tee. ¢
Y Sampiing

£ 8424: |

Processing by
Compiler
End Execution Sﬂ?ﬁ S .
.. Of Program? p * = r=ewv T
% Profile
T ; . ASdtdress TSb.Ite Information {g |
Y orage uni Storage Unit

END

i

\
\ Frequency
N .
{ Storage Unit
N
N

U.S. Patent Feb. 2, 2016 Sheet 7 of 14 US 9,250,939 B2

FIG. 5

Start Pointer Scan L~ 8800

2

[Perform Following Sub- *
Processing on All Live
Objects]

. Unnecessary Profile -
~ Mark in Object?

Delete Sampling Target Mark
From Pointer to Object b 5504
oo
¥
Normal GC Processing L~ SEOB

[End Sub-Processing]

4, ¢ $508

" Profile
Information
Storage Unit

]

S508: Discard Profile Information
Structures For Each Unused Object

U.S. Patent Feb. 2, 2016 Sheet 8 of 14 US 9,250,939 B2

FIG. 6

< S600

Access Object Indicated by Pointer

5602

Profile-Unnecessary‘ 'v Ne

Mark?

v ;5610

Address Table
Storage Unit

Collect and Update
Profile Information

(5604

Check Table Listing Addresses of
Object Access Instructions Using
Pointer As Operand For Comparison
Instruction

8812

urrent Access Mee -
Predetermined
- Conditions?_

“Profile
Information

Storage Unit

- SBOE

Address of Object Access ™
Instruction Calling Up Self
(Profiler) Registered?

Affix Profile-Unnecessary »
Mark to Object -
g

* ¢ 8816
Calculate and Update
SHOR Sampling Frequency

Delete Sampling Target Mark,
Update Base Register

Sampling
Frequency
Storage Unit

.
-

4
"

U.S. Patent

FIG. 7A

Address Table
Storage Unit

218

Feb. 2, 2016 Sheet 9 of 14 US 9,250,939 B2

Optimization Process L~ 8700

N S

[Repeat Following Sub-Processing on All Values » \
in Base Register For Storing Values of Pointers
Used in Object Access]

Use As Argument For
Procedure Call-Up?

| Perform Same Analysis As S702-S712

{ on Called-Up Destination Procedure

- {5708 {s704
“Use As Procedure ™ TR
Return Value? i

Perform Same Analysis As S702-S712

on Call-Up Source Procedure

8708

. S710

Base Register or Copied
Value Used As Operand of
Pointer Comparison
Instruction As Result of Alias
" Analysis?

es

AR

5712
{

Add Address of Object Access Instruction Using
Base Register Value as Pointer to Table

L\ [End Sub-Processing])

Rewrite Code For Profiler Call-Up L 8714

+

Generate Execution Code L~ ST6

U.S. Patent Feb. 2, 2016 Sheet 10 of 14 US 9,250,939 B2

FIG. 7B

Optimization Process L~ 8750

[Repeat Following Sub-Processing on All Values
in Base Register For Storing Values of Pointers
Used in Object Access]

N

3752

e Use As Argument s
%5, For Procedure
; Call-Up? o

*"Use As . «
& Procedure i LA 5
w,Return Value?

Used As Operand For ™
w, Ointer Comparison
h Instruction? _#

Nel 5758

Add Address of Object Access Instruction Using
Base Register Value as Pointer to Table

o

Address Térme l\ [End Sub-Processing])
Storage Unit !

o

215

Rewrite Code For Profiler Call-Up L~ B750

il

Generate Execution Code Ca S?§2

US 9,250,939 B2

Sheet 11 of 14

Feb. 2, 2016

U.S. Patent

FIG. 8

w\\\\,_.w\\\\\\m

SAMBNGOR
TMBORY

B

[tM8MNoOpt

—_—

(%) peaysanQ peads

Eﬁﬁ

HOBRDISA 11X

| BB T

| moguns

| mues

| s st

US 9,250,939 B2

Sheet 12 of 14

Feb. 2, 2016

U.S. Patent

FIG. 9A

'\!“;
-

[$ReBINolim
1B semmmoopt
BTN

e
8 " & g w o

(%) Jo113 8|yoid s|qeInWW|

LonRpes s

| UamsUBR (i

w,’. MTYINS

s T

i

Jeppdasoy epdhaon

US 9,250,939 B2

Sheet 13 of 14

Feb. 2, 2016

U.S. Patent

FIG. 9B

(%) Jo113 8|yoid AUO-83

B A
P E g Y
P E e 5
2 F =

S vogeppes

7 wingsuen s

Moy

q o i

US 9,250,939 B2

Sheet 14 of 14

Feb. 2, 2016

U.S. Patent

FIG. 9C

®
2
P&
oAy
E
m

pecbesasesisssssessi,

g
W

P07 uonmpinn s

5 UEENGIR I N

ALY

N pLss

i

o yduey mduns

me.tt. \\\\\\\\\\\\\\\\\\\ A : :

(9%) 4014 8|1Joid pOsSSaI0BUN

US 9,250,939 B2

1

INFORMATION PROCESSING DEVICE,
PROFILE TARGET DETERMINING
PROGRAM, AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority under 35 U.S.C. §119 from
Japanese Patent Application No. 2011247635 filed Nowv. 11,
2011, the entire contents of which are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a profiling technique using
sampling and, more specifically, to an information processing
device, profile target determining program and method for
reducing speed overhead during execution of a program using
profiling.

2. Description of Related Art

Many programs dynamically allocate a large number of
objects to heap areas in memory. The object format is fixed
during program execution in, for example, current Java vir-
tual machine implementation. The fixed object format is the
header and data field layout and their size. The memory
footprint (memory usage), required memory bandwidth,
cache misses, garbage collection (GC) frequency and GC
overhead are reduced, and the computer cost for executing the
program is also reduced.

The fixed object format is usually changed to reduce the
cost and to optimize the program by obtaining information
related to access to an object by the profiler during program
execution and examining the properties of the object.

For example, when there is a plurality of objects having the
property of either not being written or very infrequently being
written after initialization (henceforth referred to as “immu-
table objects™) and the content of these objects is identical, the
objects can be merged into a single object. Also, if an object
is found which has the property of either not being read or
very infrequently being read (henceforth referred to as write-
only objects), the object can be compressed. Also, if an array
object is found in which some array elements are not accessed
(henceforth referred to as unaccessed objects), the unac-
cessed elements can be deleted. This optimization reduces
GC frequency and improves cache utilization by saving
memory.

In profiling, objects are sampled because the speed over-
head is very high when access to all objects is profiled. The
speed overhead is still large even when sampling is per-
formed. Depending on the type of program, the execution
speed with profiling is at least 40% slower. When the sam-
pling frequency is simply lowered in order to reduce the speed
overhead the profile accuracy declines.

The following is a description of the literature discovered
in a prior art search for the present invention.

In Japanese Patent Publication No. 2004-0102597, a tech-
nique is disclosed in which source information selected based
on profile information or user-specified information is input-
ted, the source information is parsed, the procedure call-up
(sub-procedure) attributes called up by the procedure (main
procedure) that appear in the source information are analyzed
from the analysis results and stored in a procedure analysis
table, the main procedure is marked optimization-not-re-
quired if the sub-procedure attributes are not registered in the
procedure attribute table during inline expansion, main pro-
cedures marked optimization-not-required are removed, and

15

20

30

40

45

2

the other procedures are optimized. This technique can auto-
matically prevent optimization when there is the possibility of
a problem occurring. However, the technique described in
Patent Literature 1 does not improve a profiling technique
using sampling. Therefore, it cannot reduce speed overhead
due to profiling.

In Japanese Patent Publication No. 2005-0071135, a tech-
nique is disclosed in which a process is added to record values
and their frequency of occurrence to a maximum of two pairs
in intermediate-format data when the frequency of the value
being given to a variable inside a procedure during execution
is at least 50% to obtain primary profile information, adding
a process of recording the frequency of occurrence of two
values in primary profile information and the number of times
the procedure is executed in intermediate-format data to
obtain final profile information, determining a value with a
frequency of occurrence of at least 50% with respect to a
variable based on the final profile information, optimizing the
procedure with respect to this value, and generating the target
program. In this technique, the number of occurrences of a
value given to a variable in a procedure can be estimated
without error. In particular, profile information reliably
recording values which exceed a 50% frequency of occur-
rence can be outputted. However, the technique described in
Patent Literature 2 does not improve a profiling technique
using sampling. Therefore, it cannot reduce speed overhead
due to profiling.

In Japanese Patent Publication No. 2002-0304302, an opti-
mization device for microprocessor object code is disclosed
which includes a compiling unit for compiling inputted code,
which is a compiling program recorded on a recording
medium, using profile data to generate primary object code,
and a simulator for simulating the primary object code and
generating profile data. The simulator in this optimization
device analyzes instruction code in the primary object code
generated by the compiling unit, executes the instruction code
to execute the process corresponding to the instruction code,
detects data code with a high access frequency based on data
access information, in which the number of times the data
code is accessed during execution of the instruction code is
recorded by address and size of the accessed data code, the
data code is rearranged in a cache area, which is a data code
area accessible by a single instruction, secondary object code
is generated, the instruction code in the secondary object code
is analyzed, and the instruction code is executed. This tech-
nique can improve the execution speed of a program because
the data code in the object code is rearranged and the method
for accessing the data is optimized even when the data code is
out of displacement range. However, the technique described
in Patent Literature 3 does not improve a profiling technique
using sampling. Therefore, it cannot reduce speed overhead
due to profiling.

In Japanese Patent Publication No. 1999-0039167, a tech-
nique is disclosed in which a resource assigning unit assigns
an internal variable generated by a compiler to a machine
resource such as a register or memory, an alias accessibility
unit records in assigned resource information whether or not
there is a possibility of alias access to a memory access
instruction included in a sequence of instructions when an
assembler code generating unit outputs a sequence of instruc-
tions, and an assembler optimization unit references alloca-
tion information and optimizes the assembler level. This tech-
nique can ease constraints due to the presence of indirect
addressing-type memory access instructions, and can
improve execution times and program sizes. However, the
technique described in Patent Literature 4 does not improve a

US 9,250,939 B2

3

profiling technique using sampling. Therefore, it cannot
reduce speed overhead due to profiling.

SUMMARY OF THE INVENTION

One aspect of the present invention provides a computer
program product for determining a profile target for a sam-
pling compiler, where the computer program product having
a memory and processor, executes the steps of: storing
access-related profile information in response to detecting
access to an object set as a profile target on the basis of
sampling frequency for each class or object allocation site
during execution of a program, calculating the object alloca-
tion percentage of an object having properties used in the
optimization of the program at the each class or object allo-
cation site on the basis of profile information, and reducing
the sampling frequency regarding the class or the object allo-
cation site in which the calculated percentage is below a
predetermined threshold value.

Another aspect of the present invention provides a method
for determining a profile target for a sampling compiler in an
information processing device, where the method includes
the steps of: the information processing device storing access-
related profile information in response to detecting access to
an object set as a profile target on the basis of the sampling
frequency for each class or object allocation site during the
execution of a program, the information processing device
calculating the allocation percentage of an object having
properties used in the optimization of the program at each
class or object allocation site on the basis of profile informa-
tion, and the information processing device reducing the sam-
pling frequency regarding a class or object allocation site in
which the calculated percentage is below a predetermined
threshold value.

Another aspect of the present invention provides an infor-
mation processing system including: a profile information
collection unit for storing access-related profile information
in response to detecting access to an object set as a profile
target on the basis of the sampling frequency for each class or
object allocation site during the execution of a program, and
a sampling frequency updating unit for calculating the allo-
cation percentage of an object having properties used in the
optimization of the program at each class or object allocation
site on the basis of profile information, and for reducing the
sampling frequency regarding a class or object allocation site
in which the calculated percentage is below a predetermined
threshold value.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows an example of a hardware configuration for
a computer 50 in an embodiment of the present invention.

FIG. 1B shows an example of a hardware configuration for
a computer 50 in an embodiment of the present invention.

FIG. 2 shows a functional configuration of a profile target
determining device 200 in an embodiment of the present
invention.

FIG. 3A shows an example of a program execution trajec-
tory when a profiler without a mark removing function is used
in an embodiment of the present invention.

FIG. 3B shows an example of a program execution trajec-
tory when a profiler with a mark removing function is used in
an embodiment of the present invention.

FIG. 4 shows an example of an operational flow of the
profile target determining device 200 in an embodiment of the
present invention.

20

30

35

40

45

55

4

FIG. 5 shows an example of a detailed operational flow of
the processing performed by the memory storage unit 130 in
Step 410 shown in FIG. 4.

FIG. 6 shows an example of a detailed operational flow of
the processing performed by the profiler 120 in Step 420
shown in FIG. 4.

FIG.7A shows an example of a detailed operational flow of
the dynamic profiler 125 in Step 424 shown in FIG. 4.

FIG. 7B shows another example of a detailed operational
flow of the processing performed by the dynamic profiler 125
in Step 424 shown in FIG. 4.

FIG. 8 shows the results of a comparison experiment
regarding speed overhead in an embodiment of the present
invention.

FIG. 9A shows the results of a comparison experiment
regarding immutable profile errors in an embodiment of the
present invention.

FIG. 9B shows the results of a comparison experiment
regarding write-only profile errors in an embodiment of the
present invention.

FIG. 9C shows the results of a comparison experiment
regarding unaccessed profile errors in an embodiment of the
present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The purpose of the present invention is to solve the afore-
mentioned problem by providing an information processing
device, profile target determining program and method for
reducing speed overhead due to profiling during program
execution without reducing profile accuracy.

The inventor of the present invention conducted research to
solve the aforementioned problem and focused on the pres-
ence of truly needed profile information and unneeded profile
information in the profile information referenced during opti-
mization processing. In other words, what is important in the
optimization process is not an accurate number of times an
object has been accessed, but the properties of the objects
usable in the optimization process, such as immutable
objects, write-only objects and unaccessed objects. There-
fore, if the access profiles of objects not expressing these
properties are omitted, speed overhead can be reduced with-
out reducing profile accuracy. The present inventor conducted
further research and, as a result, the idea was conceived to
take advantage of the similar properties of objects of the same
class and objects allocated at the same allocation sites to
calculate the allocation percentage of objects having proper-
ties used in the optimization of a program in each class or
allocation site, and to reduce the sampling frequency of
classes or allocation sites with a low calculated percentage.

Thus, in order to solve the aforementioned problem, the
first aspect of the present invention is a program for determin-
ing a profile target for a sampling compiler. The program in a
computer executes the steps of (a) storing access-related pro-
file information in response to detecting access to an object
set as a profile target on the basis of the sampling frequency
for each class or object allocation site during the execution of
a program, (b) calculating the allocation percentage of an
object having properties used in the optimization of the pro-
gram at each class or object allocation site on the basis of
profile information, and (c) reducing the sampling frequency
regarding a class or object allocation site in which the calcu-
lated percentage is below a predetermined threshold value.

Here, the objects having properties used in the optimiza-
tion of the program include immutable objects which are not
written at all or are written very infrequently after initializa-

US 9,250,939 B2

5

tion, write-only objects which are not read at all or read very
infrequently, and unaccessed objects which have fields that
are not accessed.

Preferably, the object set as a profile target is identified by
a profile target mark affixed to the pointer indicating the
object. The program in a computer executes the steps of (d)
determining whether or not the object satisfies the properties
used in the optimization of the program in response to detect-
ing access to an object set as a profile target, (e) affixing a
profile unnecessary mark to the object on condition that the
object does not satisfy the properties used in the optimization
of'the program, and (f) removing a profile target mark affixed
to the pointer indicating an object to which a profile-unnec-
essary mark has been affixed during the garbage collection
process initiated during execution of the program.

Preferably, it is determined that the object does not satisfy
the properties used in the optimization of the program in step
(d) on condition that access to the detected object is access for
writing after initialization of the object. In addition to or
instead of this, it can be determined that the object does not
satisfy the properties used in the optimization of the program
on condition that access to the detected object is access for
reading the object. In addition to or instead of this, it can be
determined that the object does not satisfy the properties used
in the optimization of the program on condition that access to
the detected object is access to the final field of the object not
having been previously accessed. (Here, “the final field of the
object” means there is no other field in the object that has not
been accessed prior to this access.)

Preferably, the program also executes the steps of (g) deter-
mining whether or not a profile-unnecessary mark has been
affixed to the object in response to detecting access to an
object set as a profile target, (h) determining whether or not a
value in a register storing the pointer indicating the accessed
object will be used as an operand for a comparison instruction
after the access in response to a determination that a profile-
unnecessary mark has been affixed, and (i) removing and
rewriting to the register the profile target mark affixed to a
pointer indicating an object to which a profile-unnecessary
mark has been affixed in response to a determination that the
value will not be used as an operand for a comparison instruc-
tion.

Preferably, the program also executes the step of (j) deter-
mining whether or not a value in a register storing the pointer
indicating the object will be used as an operand for a com-
parison instruction for all access instructions to objects
included in the program during the program optimization
process, and recording an address of access instructions on
condition that a value will not been used as an operand for a
comparison instruction. Here, step (h) is performed by
searching for the address of the access instruction for the
access detected in step (g) among the addresses recorded in
step (j).

Preferably, step (j) determines the use of the register value
as an operand of a comparison instruction on condition that
the register value is used as an argument for a procedure
call-up, a procedure return value, an operand for a pointer
comparison instruction, or a value written to memory.

The present invention was explained above as a program
for determining a profile target for sampling compiler. How-
ever, the present invention can also be understood to be a
profile target determining method in which the program is
installed and executed in a computer. In addition, the present
invention can be understood to be an information processing
device in which the program has been installed to execute the
profile target determining method.

10

15

20

25

30

35

40

45

50

55

60

65

6

The present invention takes advantage of the similar prop-
erties of objects in the same class and objects allocated at the
same allocation sites to calculate the allocation percentage of
objects having properties used in the optimization of a pro-
gram in each class or allocation site, and to reduce the sam-
pling frequency of classes or allocation sites with a low cal-
culated percentage. As a result, the access profiles of objects
not expressing these properties can be omitted, and the speed
overhead can be reduced without reducing profile accuracy.
Other effects of the present invention will be understood from
the description of each embodiment.

The following is a detailed explanation of a preferred mode
of embodying the present invention with reference to the
drawings. However, the embodiment explained below does
not limit the present invention in the scope of the claims, and
all of the combinations of characteristics explained in the
embodiment are not necessarily essential to the solution of
the present invention. The present invention can be embodied
in many different modes, and should not be construed as
limited to the contents of the described embodiment. In addi-
tion, the same components and elements are denoted by the
same numbers throughout the description of the embodiment.

FIG. 1 shows an example of a hardware configuration for
the computer 50 in an embodiment of the present invention.
The computer 50 includes a main central processing unit
(CPU) 1 and a main memory 4 connected to a bus 2. Prefer-
ably, the CPU 1 is based on a 32-bit or 64-bit architecture.
Examples include the Core i (trademark) series, the Core 2
(trademark) series, the Atom (trademark) series, the Xeon
(trademark) series, the Pentium (trademark) series, and the
Celeron (trademark) series from Intel, and the Phenom (trade-
mark) series, the Athlon (trademark) series, the Turion (trade-
mark) series, and the Sempron (trademark) series from AMD.

The hard disk devices 13, 30 and removable storage (an
external storage system with replaceable recording media)
such as CD-ROM devices 26, 29, floppy disk device 20, MO
device 28, and DVD device 31 are connected to the bus 2 via
floppy disk controller 19, IDE controller 25, and SCSI con-
troller 27, etc. Storage media such as a floppy disk, MO,
CD-ROM and DVD-ROM are inserted into the removable
storage.

Programs, such as the operating system, a Java (registered
trademark) processing environment such as J2EE, Java (reg-
istered trademark) applications, Java (registered trademark)
virtual machines (VM), and Java (registered trademark) just-
in-time (JIT) compilers, as well as data, are stored in the
storage media, hard disk devices 13, 30 and ROM 14 so as to
beloaded in the main memory 4. Computer programs can also
be recorded in the storage media and in the hard disk devices
13, 30 and the ROM 14 to work with the operating system,
give instructions to the CPU 1, and embody the present inven-
tion. In other words, a profile target determining program and
data can be recorded in the various storage devices mentioned
above and installed on the computer 50 to get the computer 50
to function as a profile target determining device 200 in an
embodiment of the present invention.

The profile target determining program includes a mark
setting module, initializing module, call-up setting module,
verification module, profile information collection module,
removal determining module, sampling frequency updating
module, removal module, immediate removal module and
code rewriting module. The program and modules work with
the CPU 1 to make the computer 50 function as a mark setting
unit 202, initializing unit 203, call-up setting unit 205, veri-
fication unit 210, profile information collection unit 220,
removal determining unit 230, sampling frequency updating
unit 235, removal unit 245, immediate removal unit 250 and

US 9,250,939 B2

7

code rewriting unit 255. These units are described below. The
computer program can be compressed, divided into a plural-
ity of programs, and stored in a plurality of media.

The computer 50 receives input from an input device such
as akeyboard 6 or mouse 7 via the keyboard/mouse controller
5. The computer 50 receives input from the microphone 24
via the audio controller 21, and outputs audio from the
speaker 23. The computer 50 is connected to the display
device 11 for providing visual data to the user via the graphics
controller 10. The computer 50 is connected to a network via
a network adapter 18 (Ethernet (registered trademark) card,
token-ring card, etc.) so as to be able to communicate with
other computers.

From this description, it should be clear that the computer
50 can be realized by an information processor such as an
ordinary personal computer, workstation or main frame, or a
combination thereof. The components described above are
illustrative, and all of the components are not to be considered
essential components of the present invention.

FIG. 1B is a block diagram showing the software configu-
ration used to realize the present invention. In this drawing,
the operating system 105 manages the CPU and memory as
resources and realizes a multi-thread function using time
division. The virtual machine 110 is software serving as an
interface between an application 135 and the operating sys-
tem 105. Viewed from the perspective of the application 135
the entire hierarchy of the virtual machine acts as a Java
virtual machine. The virtual machine 110 includes an execut-
ing unit (interpreter) 115 for interpreting a program provided
in intermediate code such as byte code, a profiler 120 called
up in response to this interpretation, and a memory managing
unit 130. Also, the virtual machine 110 preferably includes a
dynamic compiler 125 such as a JIT compiler, generates
native code compiled into machine language dynamically
from byte code during execution, and speeds up execution of
the program.

A conventional optimization process performed on the
basis of profiling using object sampling will be explained
before describing the virtual machine in FIG. 1B in greater
detail. In the conventional optimization process, the follow-
ing actions are carried out in accordance with the properties of
an object indicated by profile information:

(1) When a plurality of immutable objects having the prop-
erty of either not being written or being infrequently
written after initialization are found and their content is
the same, the objects are combined into a single object.

(2) When a write-only object having the property of either
not being read or being infrequently read is found, the
object is compressed.

(3) When an unaccessed object is found in which some
array elements are not accessed, the unaccessed ele-
ments are deleted.

This optimization reduces GC frequency and improves

cache utilization by saving memory.

However, as mentioned above, conventional profiling
using object sampling leads to speed overhead. Therefore, the
present inventor focused on the properties of objects and not
the number of times an object is accessed as the key to the
optimization process, and noted the similar properties of
objects in the same class and objects allocated at the same
allocation sites. An idea was conceived to take advantage of
this to calculate the allocation percentage of objects having
properties used in the optimization of a program in each class
or allocation site, and to reduce the sampling frequency of
classes or allocation sites with a low calculated percentage.
The profile target determining device 200 in an embodiment
of the present invention incorporates this idea to determine

20

40

45

8

profile targets so that profile information can be collected in
which only access to objects truly necessary to optimization
is targeted. The following is a detailed explanation of each
configurational element in the profile target determining
device 200 of an embodiment of the present invention. The
process in (1) through (3) above is illustrative for the purposes
of explaining the embodiment. Needless to say, the present
invention can be applied as described below to profiling for
optimization on the basis of the properties of other objects.

FIG. 2 shows a functional configuration of a profile target
determining device 200 in an embodiment of the present
invention which has the hardware functions of the computer
50 shown in FIG. 1A and which has the software configura-
tion shown in FIG. 1B. The profile target determining device
200 in this embodiment of the present invention includes a
mark setting unit 202, initializing unit 203, call-up setting
unit 205, verification unit 210, profile information collection
unit 220, removal determining unit 230, sampling frequency
updating unit 235, removal unit 245, immediate removal unit
250 and code rewriting unit 255. The profile target determin-
ing device 200 also includes an address table storage unit 215
for storing an address table in which the addresses of object
access instructions determined on the basis of the verification
results of the verification unit 210 are registered, a profile
information storage unit 225 for storing profile information
collected by the profile information collection unit 220, and a
sampling frequency storage unit 240 for storing the sampling
frequency updated by the sampling frequency updating unit
235. The functions of the mark setting unit 202 and the
initializing unit 203 can be implemented as functions of the
executing unit 115 shown in FIG. 1B. The functions of the
call-up setting unit 205 and the removal unit 245 can be
implemented as functions of the memory storage unit 130
shown in FIG. 1B. The functions of the verification unit 210,
the address table storage unit 215 and the code rewriting unit
255 can be implemented as functions of the dynamic com-
piler 125 shown in FIG. 1B. The profile information collec-
tion unit 220, profile information storage unit 225, removal
determining unit 230, sampling frequency updating unit 235,
sampling frequency storage unit 240 and immediate removal
unit 250 can be implemented as functions of the profiler 120
shown in FIG. 1B.

The mark setting unit 202 determines whether or not an
allocated object is a profile target on the basis of the sampling
frequency for each class or object allocation site, and sets a
profile-target indicating mark in the pointer to an object deter-
mined to be a profile target.

Here, sampling frequency is the frequency at which sam-
pling is performed, such as sampling an object each time 1
MB is allocated. In the prior art, a single sampling frequency
with a fixed value is used. In the present invention, a sampling
frequency is prepared for each class and object allocation site,
and profiling is not performed on objects that do not have a
property used in optimization.

The sampling frequency for each class or object allocation
site is initialized using the same predetermined value imme-
diately before or immediately after start of the execution
target program. Mark setting can also be performed, for
example, using a single lower empty bit in a pointer as a flag,
or by adding an offset to the pointer which points outside of
the heap area. The mark setting unit 202 performs mark
setting, for example, during allocation of an object or during
garbage collection.

The initializing unit 203 generates, initializes and stores
profile information with a predetermined data structure in the
profile information storage unit 225 so that the profile infor-
mation collection unit 220 described below can store col-

US 9,250,939 B2

9

lected profile information in the profile information storage
unit 225 using a predetermined data structure. This predeter-
mined data structure is a structure used to store collected
profile information efficiently, and includes a profile infor-
mation structure for each object, a profile information struc-
ture for each class, and a profile information structure for each
object allocation site.

The profile information structure for each object has a first
field for storing an identifier for identifying the object allo-
cation site (henceforth referred to as the “allocation site ID”)
and a second field for storing information used to determine
whether or not the object has a property used in optimization.
Because information stored in the second field depends on the
type of optimization performed, in this explanation optimi-
zation is performed on objects using immutability, write-only
properties and inaccessibility.

In optimization using the immutability of objects, objects
having the property of either not being written or very infre-
quently being written after initialization have to be identified.
A single bit indicating whether or not the object has been read
even once is stored in the second field. (A single bit indicating
“not read” is set in this bit as the initial value.) In optimization
using the write-only properties of objects, objects having the
property of either not being read or very infrequently being
read have to be identified. However, this property can be
determined when an object does not have write-only proper-
ties immediately after having been accessed for “read”. In this
case, no information is stored in the second field. (In the case
of an object that is very infrequently read, a count value or
read frequency information is stored to indicate the number of
times the object has been read.) In optimization using the
inaccessibility of an object, array objects having some unac-
cessed array elements have to be identified. A single bit indi-
cating whether or not each byte in the object has been
accessed is stored in the second field. (A single bit indicating
“not accessed” is set in this bit as the initial value.)

The initializing unit 203 generates and initializes a profile
information structure for each object under conditions in
which an object is determined to be a profile target during
allocation of the object. The initializing unit 203 generates an
empty hash table (henceforth referred to as the “first hash
table”) and stores the table in the profile information storage
unit 225. Each time a profile information structure is gener-
ated for an object, the profile information structure is regis-
tered in the first hash table with the start address of the object
as a key. At this time, the initializing unit 203 stores the ID of
the object allocation site in the first field of the profile infor-
mation structure of each object. Initialization of the value in
the second value of the profile information structure of each
object depends on the type of initialization to be performed,
and object optimization uses the immutability, write-only
properties and inaccessibility of objects as described above.

The profile information structure by class has a first field
for storing the total number of bytes in objects of the allocated
class (“0” is set in the field as the initial value), and a second
field for storing the total number of bytes in all objects of the
allocated class having properties used in the optimization
(“0” is set in the field as the initial value). For example, in
optimization using the immutability of objects where the
class of interest is Class A, the total number of bytes for
objects allocated for Class A is stored in the first field of the
profile information structure for Class A, and the total number
of' bytes in immutable objects allocated for Class A is stored
in the second field of the profile information structure for
Class A. The profile information structure for each allocation
site is similar. In other words, the profile information structure
for each allocation site has a first field for storing the total

30

40

45

10

number of bytes in objects allocated at allocation sites (“0” is
set in the field as the initial value), and a second field for
storing the total number of bytes in all objects allocated at
allocation sites that have properties used in the optimization
(“0” 1s set in the field as the initial value).

The initializing unit 203 generates and initializes a profile
information structure for each class or a profile information
structure for each allocation site under conditions in which an
object is determined to be a profile target during object allo-
cation, and an allocated object is the initial object in a class of
objects or the initial object allocated at an allocation site. The
initializing unit 203 generates an empty hash table (hence-
forth referred to as the “second hash table”) or an empty array
(henceforth referred to as the “first array”), stores this in the
profile information storage unit 225. When a profile informa-
tion structure for each class is generated, the structure is
registered in the second hash table using an identifier for
identifying the class (henceforth referred to as a “class ID”) as
the key, or in the first array using the class ID as an index.
Similarly, when a profile information structure for each allo-
cation site is generated, the structure is registered in the sec-
ond hash table using an allocation site ID as the key, or in the
first array using the allocation site ID as an index. When the
initializing unit 203 generates and initializes a profile infor-
mation structure for each object separate from generating and
initializing a profile information profile for each class and
profile information structure for each allocation site (that is,
generating a subsequent profile information structure for each
object when the corresponding profile information structure
for each class or the corresponding profile information struc-
ture for each allocation site has not been generated), the
number of bytes in the allocated object is added to the first
field and the second field of the profile information structure
for each corresponding class or the profile information struc-
ture for each allocation site.

The call-up setting unit 205 sets the call up of the profiler
120 so that the profiler 120 is called up when an object is
accessed via a pointer with an affixed profile target mark. The
setting can be performed by rewriting code (intermediate
code) in the execution target program or by using the page
protecting mechanism. The call-up setting unit 205 uses the
latter method, and the code rewriting unit 255 described
below uses the former method. Therefore, it should be noted
that the profile target determining device 200 can include a
call-up setting unit 205 and/or a code rewriting unit 255
which is described below.

More specifically, a call-up setting unit 205 using a page
protecting mechanism sets the destination page indicated by
a pointer with an affixed profile target mark to read-write
prohibited, and calls up a signal handler when an object is
accessed via this pointer. In this situation, the signal handler
collects profile information as a profiler 120. The call-up
setting unit 205 can establish the profiler 120 call-up setting,
for example, immediately before or immediately after the
execution target program is started.

The verification unit 210 verifies whether or not the value
in each of the base registers storing the values for the pointers
used in access instructions to objects included in the interme-
diate code of the execution target program is used as an
operand for a pointer comparison instruction after the access
instruction. The verification unit 210 registers the address of
the access instruction in the address table stored in the address
table storage unit 230 when it has been determined as a result
of'verification that the value is not used in a point comparison
instruction. The address table is initialized using a blank value
immediately before or immediately after start of the execu-
tion target program. When the address table becomes too

US 9,250,939 B2

11

large, it can be set so that only the addresses of instructions for
procedures executed frequently are registered. How the
address table is used will be described below.

More specifically, the verification unit 210 analyzes the
intermediate code in the execution target program to deter-
mine whether or not the value in a base register storing a
pointer to an object is used as an argument for a procedure
call-up, a procedure return value, an operand for a pointer
comparison instruction, or a value written to memory. The
verification unit 210 preferably uses inter-procedural analysis
to repeatedly analyze and determine call-up destination pro-
cedures or call-up source procedures when the value in the
base register is used as an argument for procedure call-up or
a procedure return value. Also, the verification unit 210 pref-
erably uses alias analysis, and uses the results of the alias
analysis to determine whether or not the value in the base
register or a copied value is used as the operand in a pointer
comparison instruction.

When inter-procedural analysis or alias analysis is not
used, the verification unit 210 conservatively determines the
possibility of a base register value being used in a pointer
comparison instruction when a base register value storing a
pointer to an object is one of the following: an argument for a
procedure call-up, a procedure return value, a value written to
memory, or an operand for a pointer comparison instruction.
The verification unit 210 can perform verification and address
table creation, for example, during dynamic compiling of
some of the intermediate code in the execution target pro-
gram.

In response to the call up of the profiler 120 or signal
handler, that is, in response to the detection of access to an
object set as a profile target, the profile information collection
unit 220 collects the profile information related to the access.
The profile information collection unit 220 stores the col-
lected profile information in a structure for profile informa-
tion described above. More specifically, the profile informa-
tion collection unit 210 references the first hash table using
the start address of the accessed object as the key, and obtains
the profile information structure for each object correspond-
ing to the object. The profile information collection unit 220
stores the information needed to determine whether or not the
properties used in optimization are satisfied by the accessed
object in the second field of the obtained profile information
structure for each object.

For example, during optimization using object immutabil-
ity, the profile information collection unit 220 posts a single
bit stored in the second field to indicate “read” access if the
current access is “read” access, and does nothing if the current
access is “write” access. During optimization using the write-
only properties of objects, the profile information collection
unit 220 stores nothing in the second field as explained above.
During optimization using object inaccessibility, the profile
information collection unit 220 posts a bit corresponding to a
byte of the accessed object. The profile information collection
unit 220 performs profile information collection, for
example, during profiling performed when the execution tar-
get program is executed. The profile information collection
unit 220 calls up the removal determining unit 230 when the
collected profile information has been stored.

When called up by the profile information collection unit
220, the removal determining unit 230 determines whether or
not the accessed object satisfies the properties used in pro-
gram optimization on the basis of the profile information
stored in the profile information storage unit 225. The
removal determining unit 230 sets a profile-unnecessary mark
in the object under conditions in which it has been determined
that the object does not satisty the properties used in the

10

15

20

25

30

35

40

45

50

55

60

65

12

optimization of the program. This is because the object has no
value for profiling when it does not satisfy or has not satisfied
the properties used in program optimization. The removal
determining unit 230 can be acquired by receiving from the
profile information collection unit 220 a pointer to the corre-
sponding profile information structure for each object or by
referencing the first hash table using the start address of the
currently accessed object as a key.

During optimization using object immutability, the
removal determining unit 230 determines that an object does
not satisfy the properties used in program optimization under
conditions in which access to the detected object is access for
writing after initialization of the object. These conditions are
satisfied when the value of the flag in the second field of the
acquired corresponding profile information structure for each
object is “1”, which indicates that it has been “read” at least
once and when the current access is “write” access.

During optimization using the write-only properties of
objects, the removal determining unit 230 determines that an
object does not satisfy the properties used in program opti-
mization under conditions in which access to the detected
object is access for reading the object. More specifically,
these conditions are satisfied when the current access is
“read” access.

During optimization using object inaccessibility, the
removal determining unit 230 determines that an object does
not satisfy the properties used in program optimization under
conditions in which access to the detected object is access to
the final field of the object not having been previously
accessed. These conditions are satisfied when the values of all
flags in the second field of the acquired corresponding profile
information structure for each object is “1”, which indicates
that it has been accessed.

The header of an object is used to affix a profile-unneces-
sary mark to the object. In other words, an object typically
includes aheader and at least one field. The header is a portion
embedded in the object for holding information on the object
itself. For example, it includes the class ID of the object and
the size of the object. This field is accessible by the user of the
object and has two types of data, for example, pointer and
non-pointer. A pointer is a value referencing a certain location
in a memory area. In many language processing systems, the
pointer to an object references the start address of the object.
A non-pointer contains a value used in programming itself. It
can include numbers, characters, and/or Boolean values. A bit
in the header of the object can be used as a flag to affix a
profile-unnecessary mark.

The determination results of the removal determining unit
230 remain in the corresponding profile information structure
for each class or the corresponding profile information struc-
ture for each allocation site. More specifically, the removal
determining unit 230 references the second hash table using
the class ID embedded in the header of an accessed object as
a key, and acquires the corresponding profile information
structure for each class. Then, for determination results indi-
cating that the properties used in program optimization are
not satisfied, the removal determining unit 230 subtracts the
number of bytes of the accessed object from the total number
of bytes in all allocated objects having properties used in
optimization stored in the second field of the structure. Simi-
larprocessing is performed in the case of a profile information
structure for each allocation site. However, in this case, the
allocation site ID is acquired from the first field of the corre-
sponding profile information structure for each object.

When subtraction is performed in this process, the removal
determining unit 230 determines the necessity for a sampling
frequency update. First, the removal determining unit 230

US 9,250,939 B2

13

calculates the percentage of allocated objects with properties
used in program optimization at each class or object alloca-
tion site on the basis of profile information stored in the
profile information storage unit 225. More specifically, the
removal determining unit 230 calculates this percentage by
determining the total number of bytes in allocated objects
with properties used in optimization stored in the second field
relative to the number of bytes in all allocated objects stored
in the first field of all of the sampling information structures
for each class or in all of the sampling information structures
for each allocation site.

Next, the removal determining unit 230 compares the per-
centage determined for each class or object allocation site to
a predetermined threshold value, and determines that a sam-
pling frequency update is required for a class or object allo-
cation site when the calculated percentage is lower than the
predetermined threshold value. The predetermined threshold
value can be determined via experimentation, but a numerical
value such as 1% can also be used. When, as a result, it has
been determined that a sampling frequency update is
required, the removal determining unit 230 calls up the sam-
pling frequency updating unit 235 described below. The
removal determining unit 230 can perform this series of
actions, for example, in the profiling performed during execu-
tion of the execution target program.

When called up by the removal determining unit 230, the
sampling frequency updating unit 235 reads from the sam-
pling frequency storage unit 240 the sampling frequency for
a class or object allocation site determined by the removal
determining unit 230 to have a calculated percentage lower
than the predetermined threshold value, reduces the read
value, and writes back the value to the sampling frequency
storage unit 240. Here, the sampling frequency can be
reduced by subtracting a predetermined value from the sam-
pling frequency or by dividing the sampling frequency by a
predetermined value. However, a predetermined lower limit
is provided because the accuracy of the profiling falls off
when the frequency reaches zero. For example, %4 MB (one
sampling per 8 MB allocated) can be set as the initial value,
the current sampling frequency can be set so as to be divided
by two each time the frequency is reduced, and %512 MB (one
sampling per 512 MB allocated) can be set as the lower limit
value. The updated sampling frequency stored in the sam-
pling frequency storage unit 240 is referenced during the next
sampling when the mark setting unit 202 determines the
profile target. The sampling frequency updating unit 235
performs the sampling frequency update in the profiling per-
formed during execution of the execution target program.

The removal unit 245 determines whether or not a profile-
unnecessary mark has been set in an object when all of the
pointers used to detect unused objects are scanned during
garbage collection initiated during program execution. The
removal unit 245 removes a profile target mark affixed to a
pointer to an object under conditions in which it has been
determined that a profile-unnecessary mark has been set for
the object.

The removal processing is performed in garbage collection
performed during execution of the program for the following
reason. Profile target marks have to be removed from all
pointers to objects in order to remove the objects as profile
targets. Otherwise, there are two different pointer values
referring to the same object, and the pointer comparison does
not operate properly. However, in this method, access to
objects is needlessly profiled until the next garbage collection
after profile-unnecessary marks are affixed. In order to elimi-
nate this problem, an immediate removal unit 250 is provided
in the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

14

In response to the call up of the profiler 120 or signal
handler, that is, in response to detection of access to an object
set as a profile target, the immediate removal unit 250 deter-
mines whether or not a profile-unnecessary mark has been
affixed to the object. Next, the immediate removal unit 250
determines whether or not the value of the base register stor-
ing a pointer to the accessed object is used as a comparison
instruction operand subsequent to access under conditions in
which it has been determined that a profile-unnecessary mark
has been affixed to the object. Then, the immediate removal
unit 250 removes the profile target mark from the pointer to
the object and writes it back to the base register under condi-
tions in which it has been determined that the value in the base
register is not used as a comparison instruction operand. The
immediate release unit 250 performs instant removal, for
example, in profiling performed during execution of the
execution target program.

Here, when there is a profile-unnecessary mark affixed to
an object, removal of the profile target mark affixed to the
pointer referring to the object is performed under conditions
in which the value ofthe base register storing the pointer is not
used as a comparison instruction operand subsequent to the
detected access for the following reason. As mentioned
above, profile target marks have to be removed from all point-
ers to objects in order to remove the objects as profile targets
or else there are two different pointer values referring to the
same object, and the pointer comparison does not operate
properly. However, if a pointer with a profile target mark to be
removed is not used in a pointer comparison instruction, this
problem does not occur even when the profile target mark has
been removed from the pointer. As a result, a benefit is
obtained in that at least needless profiling is not performed
until the next garbage collection regarding access via pointers
whose profile target mark has been removed.

The immediate removal unit 250 determines whether or not
the value in a base register is used as the operand in a com-
parison instruction using the address table stored in the
address table storage unit 230. In other words, the immediate
removal unit 250 references the address table and determines
whether or not the address of the access instruction indicating
access to an object with an affixed profile-unnecessary mark
has been registered. When the address of the access instruc-
tion has been registered, the immediate removal unit 250
determines that the value in the base register is not used as the
operand of a comparison instruction during subsequent
execution of the program.

Referring to FIG. 3A and FIG. 3B, the following explains
the difference in the number of times profiling is performed
under certain conditions when the same program is executed
by a profiler incorporating the removal determining unit 230
and the immediate removal unit 250 and by a profiler not
incorporating these units.

FIG. 3A shows an example of the program execution tra-
jectory when a profiler is called up that does not have the
functions of the removal determining unit 230 and the imme-
diate removal unit 250. In Block 300, the pointer
object_pointer is set in register r5. Here, the pointer
object_pointer has a profile target mark affixed. Next, the
process advances to Block 302 where it is determined by the
“if” statement whether or not the pointer set in register r5 is a
pointer with a profile target mark affixed. Because the pointer
has a profile target mark affixed, the determination result is
true, the profiler is called up, and the profiling process 306 is
executed.

The profiling process 306 shown in FIG. 3A includes (1)
accessing the destination object referred to by the pointer set
in register r5, (2) updating the profile information in the

US 9,250,939 B2

15

accessed object, (3) and returning immediately after the cur-
rent access instruction. Therefore, the profiler is called up in
response to the access instruction “write to r5.field1” in Block
302, and the profile information for the object referred to by
the pointer set in register r5 is updated on the basis of writing
to field 1 of the object. The process returns to done_Label_1
immediately after access instruction “write to r5.field1”.

Next, the process advances to Block 304, where it is deter-
mined again using the “if” statement whether or not the
pointer set in register r5 is a pointer having an affixed profile
target mark. Because the value in register r5 has not been
updated, the determination result at this time is true, the
profiler is called up, and the profiling process 306 is executed.
Therefore, the profiler is called up in response to the access
instruction “read from r5.field2” in Block 304, and the profile
information for the object referred to by the pointer set in
register r5 is updated on the basis of reading from field 2 of the
object. The process returns to done_Label_2 immediately
after access instruction “read from r5 field2”.

When a profiler without the functions of the removal deter-
mining unit 230 and the immediate removal unit 250 is used
as described above, once a profile target mark has been
affixed, the mark is not removed from a pointer at least until
the next garbage collection. In the example shown in FIG. 3A,
the profiler is called up and the profiling process 306 is
executed no matter what object is accessed via register r5 in
Block 302 and Block 304 (see arrow 308 indicating the execu-
tion trajectory).

FIG. 3B shows an example of the program execution tra-
jectory when a profiler is called up that has the functions of
the removal determining unit 230 and the immediate removal
unit 250. Note that the program shown in FIG. 3B (including
Block 300 through Block 304) is the same as the program
shown in FIG. 3 A (including Block 300 through Block 304).
First, in Block 300, the pointer object_pointer with an affixed
profile target mark is set in register r5. Next, the process
advances to Block 302 where it is determined by the “if”
statement whether or not the pointer set in register r5 is a
pointer with a profile target mark affixed. Because the pointer
has a profile target mark affixed, the determination result is
true, the profiler is called up, and the profiling process 310 is
executed.

The profiling process 310 shown in FIG. 3B includes (1)
accessing the destination object referred to by the pointer set
in register r5, (2) determining whether or not a profile-unnec-
essary mark has been affixed to the object, (2-1) using the
address table to reference the address of the access instruction
for accessing the current object when a profile-unnecessary
mark has been affixed to the object, (2-2) determining
whether or not there is a bit in the address table, extracting the
pointer in register r5 and removing the profile target mark
when there is a bit, and writing back to register r5, (2-3)
updating the object profile when a profile-unnecessary mark
is not affixed to the object, and (2-4) affixing a profile-unnec-
essary mark to the object when the object does not satisfy the
properties used in optimization. Here, action 2-4 corresponds
to the removal determining unit 230, and actions 2, 2-1 and
2-2 correspond to the immediate removal unit 250.

Therefore, the profiler is called up in response to the access
instruction “write to r5.field1” in Block 302, and it is deter-
mined whether or not the object referred to by the pointer set
in register r5 has a profile-unnecessary mark affixed. Here, a
profile-unnecessary mark is affixed to the object, the address
of access instruction “write to r5.field1” is registered in the
address table, and it is verified that the value in register r5 is
not used as an operand in a pointer comparison instruction in
the processing subsequent to the access instruction “write to

25

40

45

55

16

r5.field1”. In the profiling process 310, the pointer with the
profile target mark removed is written back to the register r5,
and the process returns to done_Label_1 immediately after
access instruction “write to r5.field1”.

Next, the process advances to Block 304, where it is deter-
mined whether or not the pointer set again in register r5 from
the “if” statement is a pointer with a profile target mark.
Because, as mentioned above, the profile target mark has been
removed from the pointer in profiling process 310, the deter-
mination result is false this time. The profiler is not called up,
and access instruction “read from r5.field2” is executed.

As mentioned above, in a profiler incorporating the func-
tions of the removal determining unit 230 and the immediate
removal unit 250, the object indicated by the pointer does not
have properties used in optimization afterwards, even when a
profile target mark was once affixed to the pointer. Also, the
profile target mark is removed when it has been verified that
the value in the register storing the pointer is not used in a
pointer comparison instruction in the subsequent processing.
Therefore, in the example shown in FIG. 3B, the profiler is not
called up with respect to access to an object via register r5 in
Block 304 after the conditions have been satisfied. This has
the merit of not requiring unnecessary execution of the pro-
filing process 310 (see arrow 312 indicating the execution
trajectory).

Returning to FIG. 2, the code rewriting unit 255 sets the
profiler call-up so that the profiler is called up when there is
access to an object via a pointer with a profile target mark. As
mentioned above, the code rewriting unit 255 sets the profiler
call-up by rewriting code. More specifically, before all access
instructions to objects via pointers in the execution target
program, the code rewriting unit 255 inserts code determining
whether or not there is a profile target mark and code calling
up the profiler based on determination results indicating the
affixing of such a mark (see the “if” statement in the first line
and the “goto” jump instruction in the second line of Block
302 in FIG. 3 B). The code rewriting unit 255 performs the
code rewriting process during dynamic compiling of, for
example, intermediate code serving as an execution target
program.

The following is an explanation of the operation of the
profile target determining device 200 with reference to FI1G. 4
through FIG. 7A and FIG. 7B. FIG. 4 shows an example of an
operational flow of the profile target determining device 200
in an embodiment of the present invention. FIG. 5 shows an
example of a detailed operational flow of the processing per-
formed by the memory storage unit 130 in Step 410 shown in
FIG. 4. FIG. 6 shows an example of a detailed operational
flow of the processing performed by the profiler 120 in Step
420 shown in FIG. 4. FIG. 7A shows an example of a detailed
operational flow of the dynamic profiler 125 in Step 424
shown in F1G. 4. FIG. 7B shows another example of a detailed
operational flow of the processing performed by the dynamic
profiler 125 in Step 424 shown in FIG. 4 (in a case in which
inter-procedural analysis and alias analysis are not used).

The operational flow of the profile target determining
device 200 shown in FIG. 4 starts at Step 400 in which the
executing unit 115 initializes the sampling frequency for each
class or object allocation site using the same predetermined
value. Next, the executing unit 115 calls up the memory
storage unit 130, and sets the page protecting mechanism to
call up the profiler 120 (Step 402). Next, the executing unit
115 starts executing the execution target program (interme-
diate code) and reads the instruction to be executed next.

Next, the executing unit 115 determines whether or not the
current instruction to be executed allocates an object (Step
406). When it has been determined that the current instruction

US 9,250,939 B2

17

allocates an object (Step 406: YES), the executing unit 115
determines whether or not garbage collection is necessary
(Step 408). When it has been determined that garbage collec-
tion is necessary (Step 408: YES), the executing unit 115 calls
up the memory storage unit 130 and executes the process.
Details of the process performed by the memory storage unit
130 will be described below with reference to FIG. 5.

After the process performed by the memory storage unit
130 has been completed, the executing unit 115 determines
whether or not the object allocated by the current instruction
is to be sampled on the basis of the sampling frequency of the
class or object allocation site stored in the sampling frequency
storage unit 240. In other words, it determines whether or not
the object is a profile target (Steps 412, 414). When it has been
determined that the object is a profile target (Step 414: YES),
the executing unit 115 sets the mark indicating a sampling
target in the pointer to the allocated object (Step 416), gen-
erates, initializes and stores profile information with a prede-
termined data structure corresponding to the allocated object
in the profile information storage unit 225 (Step 417). The
profile information with the predetermined data structure is a
profile information structure for each object as described
above. In this situation, it is a profile information structure for
each corresponding class and a profile information structure
for the allocation site. The latter profile information structure
is generated only in this situation. However, it should be noted
that a profile information structure for each corresponding
object is always generated during initialization in a process in
which the number of bytes of an allocated object is added to
the first and second fields of the profile information structure
for each corresponding class and the profile information
structure for each allocation site.

After Step 417, the process advances to Step 418 when it
has been determined in Step 406 that the current instruction
does not allocate an object (Step 406: NO) or when it has been
determined in Step 414 that the object is not a profile target
(Step 414: NO). Here, the executing unit 115 determines
whether or not the current instruction is an access instruction
to a sampled object (that is, a profile target object). When the
current instruction is an access instruction to a profile target
object (Step 418: YES), the execution unit calls up the profiler
120 and executes the process (Step 420). The process per-
formed by the profiler 120 will be described in detail below
with reference to FIG. 6.

After Step 420 or when it has been determined in Step 418
that the current instruction is not an access instruction to a
profile target object (Step 418: NO), the process advances to
Step 422 where the executing unit determines whether or not
aportion ofthe intermediate code to be executed next requires
dynamic compiling. When it has been determined that the
intermediate code requires dynamic compiling (Step 422:
YES), the executing unit calls up the dynamic compiler 125
and the process is executed (Step 424). The process per-
formed by the dynamic compiler 125 will be described in
detail below with reference to FIG. 7A and FIG. 7B.

After Step 424 or when it has been determined in Step 422
that dynamic compiling is not required (Step 422: NO), the
process advances to Step 426 where the executing unit 115
determines whether or not execution of the execution target
program has been completed. When execution of the execu-
tion target program has not been completed (Step 426: NO),
the process returns to Step 404. When execution of the execu-
tion target program has been completed (Step 426: YES), the
operational flow of the profile target determining device 200
is complete.

The operational flow performed by the memory managing
unit 130 shown in FIG. 5 starts with Step 500 in which the

10

15

20

25

30

40

45

50

55

60

65

18

memory managing unit 130 scans the tree structure indicating
the relationship between objects referenced by pointer in
order to detect all of the objects not yet used that have been
generated in the heap area, and the following series of actions
are repeated on all of the pointers indicating objects being
used. First, the memory managing unit 130 determines
whether or not a profile-unnecessary mark has been affixed to
the object indicated by the current pointer (Step 502). When
aprofile-unnecessary mark has been affixed (Step 502: YES),
the memory managing unit 130 removes the profile target
mark from the current pointer (Step 504).

When a profile-unnecessary mark has not been affixed in
Step 502 (Step 502: NO), the process advances from Step 504
to Step 506 where the memory managing unit 130 executes
the usual garbage collection process on the current pointer.
For example, the memory managing unit 130 affixes amark in
the mark storage area corresponding to the object indicated
by the current pointer (the mark & sweep technique). The
algorithm for the usual garbage collection process is well
known in the art. Because this is not the subject of the present
invention, a detailed description has been omitted.

When the series of actions mentioned above is performed
on all of the pointers indicating objects to be used, the
memory storage unit 130 discards the profile information
structure of each unused object stored in the profile informa-
tion storage unit 225. The process is then ended.

The operational flow performed by the profiler 120 shown
in FIG. 6 starts with Step 600 in which the profiler 120
accesses the object in the current object access instruction
that was the cause of the call up of the profiler 120. Next, the
profiler 120 determines whether or not a profile-unnecessary
mark has been affixed to the accessed object (Step 602).

When a profile-unnecessary mark has been affixed (Step
602: YES), the profiler 120 searches the address table stored
in the address table storage unit 230 (Step 604), and deter-
mines whether or not an address has been recorded which
matches the address in the current object access instruction
(Step 606). When a matching address has been recorded (Step
606: YES), the profiler 120 accesses the base register storing
the current pointer used in the current object access instruc-
tion, removes the profile target mark from the current pointer,
and rewrites the pointer without a profile target mark to the
base register (Step 608).

When a profile-unnecessary mark has not been affixed
(Step 602: NO), the profiler 120 collects profile information
on the object accessed by the current object access instruc-
tion, and updates the corresponding profile information
stored in the profile information storage unit 225 (Step 610).
Next, the profiler 120 determines whether or not access to the
object according to the current object access instruction
meets predetermined conditions for determining that the
object satisfies the properties for optimization of the execu-
tion target program (Step 612). When it has been determined
that the predetermined conditions have been met (Step 612:
YES), the profiler 120 affixes a profile-unnecessary mark to
the object accessed by the current object access instruction
(Step 614).

The process advances from Step 614 to Step 616, and the
profiler 120 calculates the sampling frequency for each class
or object allocation site on the basis of the profile information
stored in the profile information storage 225 and updates the
information stored in the sampling frequency storage unit 240
with the calculated sampling frequency. The process ends
after Step 616 or Step 608, or when no matching address has
been registered in Step 606 (Step 606: NO), or when the
predetermined conditions have not been met in Step 612 (Step
612: NO).

US 9,250,939 B2

19

The operational flow of the process performed by the
dynamic compiler 125, shown in FIG. 7A, starts with Step
700 in which the dynamic compiler 125 optimizes a portion of
the code in the execution target program to be executed next.
There are several types of optimization and the algorithms for
these types of optimization are well known in the art. Because
this is not the subject of the present invention, a detailed
description has been omitted. Next, the dynamic compiler
125 detects all base registers storing pointers used in the
object access instructions included in the portion of the code,
and repeats the series of actions from Step 702 to Step 712 for
each detected base register.
First, the dynamic compiler 125 determines whether or not
the value in the current register is used as a procedure call-up
argument for the corresponding object access instruction
(Step 702). When it has been determined that the value is to be
used as a procedure call-up argument (Step 702: YES), the
dynamic compiler 125 performs the same actions as the series
of analysis actions from Step 702 to Step 712 on the proce-
dure of the call-up destination.
When it has been determined in Step 702 that the value is
not used as a procedure call-up argument (Step 702: NO) or
Step 704 has been completed, the process advances to Step
706 where the dynamic compiler 125 determines whether or
not the value in the current base register is used as the proce-
dure return value for the corresponding object access instruc-
tion. When it has been determined that the value is to be used
as the procedure return value (Step 706: YES), the dynamic
compiler 125 performs the same actions as the series of analy-
sis actions from Step 702 to Step 712 on the procedure of the
call-up source.
When it has been determined in Step 706 that the value is
not used as a procedure return value (Step 706: NO) or the
process in Step 708 has been completed, the process moves to
Step 710 where the dynamic compiler 125 uses the results of
the alias analysis to determine whether or not the value in the
current base register or a value copied from the base register
is used as an operand in a pointer comparison instruction.
When it has been determined that the value is not used as an
operand for a pointer comparison instruction (Step 710: NO),
the dynamic compiler 125 registers the address of the object
address instruction in which the value of the current base
register is used as the pointer in the address table stored in the
address table storage unit 215 (Step 712). When it has been
determined in Step 710 that the value is used as an operand in
a pointer comparison instruction (Step 710: YES), the series
of actions performed on the current base register is ended.
When the series of actions from Step 702 to Step 712 has
ended on all of the base registers, the dynamic compiler 125
rewrites the code for calling up the profiler 120 to a portion of
the compiling target code (Step 714). Next, the dynamic
compiler 125 compiles the portion of compiling target code,
and generates native code (Step 716). The algorithm for the
compiling process is well known in the art. Because this is not
the subject of the present invention, a detailed description has
been omitted. The process ends after Step 716.
Explanation of the operational flow of the processing
shown in FIG. 7B performed by the dynamic compiler 125 in
cases not involving inter-procedural analysis or alias analysis
has been omitted because it does not differ from the opera-
tional flow shown in FIG. 7A except with regard to the fol-
lowing points.
Step 704 and Step 708 in the operational flow shown in
FIG. 7A are not included.

In Step 757, which corresponds to the Step 710 in the
operational flow shown in FIG. 7A, it is simply deter-
mined whether or not the value in the base register is

10

15

20

25

30

35

40

45

50

55

60

65

20

used as an operation in a pointer comparison instruction
without using an alias analysis.

If at least one of the Steps 752, 754 and 757 corresponding
to Steps 702, 706 and 710 in the operational flow shown
in FIG. 7A, and newly added Step 756, where it is
determined whether a base register is written to memory,
holds true, the possibility of the value of the base register
being used in a pointer comparison instruction is con-
sidered true conservatively, and the series of actions
performed on the current base register is ended imme-
diately thereafter.

Experiment

1. Implementation

The profile target determining program in the embodiment
of'the present invention was implemented in a Java (registered
trademark) virtual machine from IBM using a RISC proces-
sor with a maximum operating frequency of 4.7 GHz (Power
6 (trademark) with a quad-core, two-thread SMT engine) and
a 32 GB main memory as hardware, and Linux (trademark)
2.6.18 as the operating system. The implemented profile tar-
get determining program is a program used to determine
profile targets for three simultaneous optimizations on the
basis of object immutability, write-only properties and inac-
cessibility. Six benchmark programs that allocate many
objects were selected from SPECjvm2008 (compiler.com-
piler, derby, serial, Ssunflow, xml.transform, xml.validation).

2. Comparison

In this experiment, the following three sampling methods
were performed.

1 MB/NoOpt (conventional method): one sampling per 1
MB of allocated objects (single, fixed sampling frequency).

64 MB/NoOpt (conventional method): one sampling per
64 MB of allocated objects (single, fixed sampling frequency;
simple reduction in sampling frequency).

1 MB/Opt (present invention): A sampling frequency of
one sampling per 1 MB of allocated objects is set as the initial
value in a variable sampling frequency based on class/object
allocation site.

3. Evaluation Criteria

In this experiment, there were two evaluation criteria:
speed overhead and profiling accuracy. The baseline for the
speed overhead were the conditions under which no access
profiling is performed. The profiling accuracy was calculated
as follows in an explanatory example of profiling performed
to optimize on the basis of object immutability. First, the
estimated percentage of the total number of bytes of immu-
table objects versus the total number of bytes of all allocated
objects in each object allocation site was calculated on the
basis of profile information. Then, all accesses of all objects
were profiled separately to determine the true percentage in
each allocation site. The absolute value of the difference
between the estimated percentage and the true percentage
(=error) was weight-averaged using the total number of bytes
for all allocated objects in each allocation site. The other two
optimizations were determined in the same manner.

4. Results

FIG. 8 shows the results of a comparison experiment
regarding speed overhead. FIG. 9A through FIG. 9C show,
respectively, the experiment results for profiling accuracy for
profiling performed to optimize on the basis of object immu-
tability, profiling accuracy for profiling performed to opti-
mize on the basis of the write-only properties of objects, and
profiling accuracy for profiling performed to optimize on the
basis of the inaccessibility of objects. As shown in FIG. 8, the
maximum speed overhead for 1 MB/NoOpt (conventional
method) was at least 40%. As shown in FI1G. 9A through FIG.
9C, the profiling errors in 64 MB/NoOpt (conventional

US 9,250,939 B2

21

method) were substantial. In the case of 1 MB/Opt (the
present invention), the profiling accuracy for profiling per-
formed to optimize on the basis of the inaccessibility of
objects was the highest. Among the three types of optimiza-
tion, it clearly had the greatest effect on optimization per-
formed on the basis of the inaccessibility of objects.

The present invention was explained using an embodiment,
but the technical scope of the present invention is not limited
to the embodiment described above. The possibility of many
changes and improvements to this embodiment should be
apparent to those skilled in the art. Embodiments including
these changes and improvements are within the technical
scope of the present invention, as should be clear from the
description of the claims.

The order of execution for operations, steps and action in
the devices, systems, programs and methods described in the
claims, description and drawings was described using such
terms as “previous” and “prior”. However, these operations,
steps and actions can be realized in any order as long as the
output of the previous process is used by the subsequent
process. The operational flow in the claims, description and
drawing were explained using terms such as “first” and “next”
for the sake of convenience. However, the operational flow
does not necessarily have to be executed in this order.

The invention claimed is:
1. A computer program product for determining a profile
target for a sampling compiler, wherein the computer pro-
gram product having a memory and processor, executes the
steps of:
storing access-related profile information in response to
detecting access to an object that is set as a profile target
on the basis of a sampling frequency for each class or
object allocation site during execution of a program;

calculating an object allocation percentage of the object
having properties used in the optimization of the pro-
gram at the each class or object allocation site on the
basis of profile information; and

reducing the sampling frequency regarding the class or the

object allocation site in which the calculated percentage
is below a predetermined threshold value.
2. The computer program product according to claim 1,
wherein the object having properties used in the optimization
of'the program includes an immutable object not written after
initialization.
3. The computer program product according to claim 1,
wherein the object having properties used in the optimization
of the program comprises a write-only object not read after
initialization.
4. The computer program product according to claim 1,
wherein the object having properties used in the optimization
of'the program comprises an unaccessed object having a field
that is not accessed.
5. The computer program product according to claim 1,
wherein the object set as a profile target is identified by a
profile target mark affixed to the pointer indicating the object,
and wherein the program in a computer executes the steps of:
determining whether or not the object satisfies the proper-
ties used in the optimization of the program in response
to detecting access to an object set as a profile target,

affixing a profile unnecessary mark to the object on condi-
tion that the object does not satisty the properties used in
the optimization of the program, and

removing the profile target mark affixed to the pointer

indicating an object to which the profile unnecessary
mark has been affixed during the garbage collection
process initiated during execution of the program.

10

15

20

35

40

45

50

55

60

65

22

6. The computer program product according to claim 5,
wherein it is determined that the object does not satisfy the
properties used in the optimization of the program on condi-
tion that access to the detected object is access for writing
after initialization of the object.

7. The computer program product according to claim 5,
wherein it is determined that the object does not satisfy the
properties used in the optimization of the program on condi-
tion that access to the detected object is access for reading the
object.

8. The computer program product according to claim 5,
wherein it is determined that the object does not satisfy the
properties used in the optimization of the program on condi-
tion that access to the detected object is access to the final field
of the object not having been previously accessed.

9. The computer program product according to claim 5,
wherein the program in a computer executes the steps of:

determining whether or not a profile-unnecessary mark has

been affixed to the object in response to detecting access
to the object set as a profile target,

determining whether or not a value in a register storing the

pointer indicating the accessed object is being used as an
operand for a comparison instruction since access in
response to a determination that a profile-unnecessary
mark has been affixed, and

removing and rewriting to the register the profile target

mark affixed to the pointer indicating an object to which
aprofile-unnecessary mark has been affixed in response
to a determination that the value has not been used as an
operand for a comparison instruction.

10. The computer program product according to claim 9,
wherein the program in a computer executes the step of:

determining whether or not a value in a register storing the

pointer indicating the object is being used as an operand
for a comparison instruction since access for all access
instructions to objects included in the program during
the program optimization process, and recording an
address of access instructions on condition that the value
is not used as an operand for a comparison instruction,
and wherein determining whether or not a value in a
register storing the pointer indicating the accessed
object is being used as an operand is performed by
searching for the address of the access instruction for the
access detected among the addresses recorded.

11. The computer program product according to claim 10,
further comprising determining the use of the register value as
an operand of a comparison instruction on condition that the
register value is used as an argument for a procedure call-up,
aprocedure return value, an operand for a pointer comparison
instruction, or a value written to memory.

12. A method for determining a profile target for a sampling
compiler in an information processing device, wherein the
method comprises:

the information processing device storing access-related

profile information in response to detecting access to an
object that is set as a profile target on the basis of a
sampling frequency for each class or object allocation
site during the execution of a program;

the information processing device calculating an allocation

percentage of the object having properties used in the
optimization of the program at each class or object allo-
cation site on the basis of profile information; and

the information processing device reducing the sampling

frequency regarding a class or object allocation site in
which the calculated percentage is below a predeter-
mined threshold value.

US 9,250,939 B2

23

13. An information processing system for determining a
profile target for a sampling compiler, the information pro-
cessing system comprising:

amemory;

a processor communicatively coupled to the memory; and

an information processing module communicatively

coupled to the memory and the processor, wherein the
information processing module is configured to execute
the steps of:
storing access-related profile information in response to
detecting access to an object that is set as a profile target
on the basis of a sampling frequency for each class or
object allocation site during the execution of a program;

calculating an allocation percentage of the object having
properties used in the optimization of the program at
each class or object allocation site on the basis of profile
information; and

reducing the sampling frequency regarding a class or

object allocation site in which the calculated percentage
is below a predetermined threshold value.

#* #* #* #* #*

10

15

20

24

